7 research outputs found

    Successfully controlling malaria in South Africa

    Get PDF
    Following major successes in malaria control over the past 75 years, South Africa is now embarking on a malaria elimination campaign with the goal of zero local transmission by the year 2018. The key control elements have been intensive vector control, primarily through indoor residual spraying, case management based on parasitological diagnosis using evidence-based drug policies with artemisinin-based combination therapy since 2001, active health promotion in partnership with communities living in the malaria transmission areas, and cross-border collaborations. Political commitment and long-term funding for the malaria control programme have been a critical component of the programme’s success. Breaking the cycle of transmission through strengthening of active surveillance using sensitive molecular tests and field treatment of asymptomatic persons, monitoring for antimalarial drug resistance and insecticide resistance, strengthening cross-border initiatives, and ongoing programme advocacy in the face of a significant decrease in disease burden are key priorities for achieving the elimination goal.http://www.samj.org.zaam201

    Evaluating a 24-h mobile reporting system for malaria notifications in comparison with a paper-based system in South Africa, 2015

    No full text
    Abstract Background As South Africa strives to achieve malaria elimination by 2018 (zero local cases) the country needs to strengthen its disease surveillance system by reducing the timeliness from case diagnosis to notification of key stakeholders in the malaria programme. This study evaluated the feasibility of a 24-h mobile reporting system, designed for speeding up malaria notifications, from primary healthcare facilities to district, provincial, and national malaria programmes in South Africa. Methods A prospective descriptive study utilizing primary data collected from structured interviews with healthcare workers in public healthcare facilities was used to compare two reporting systems (24-h mobile reporting system and the paper-based reporting system) in malaria endemic provinces (Limpopo, Mpumalanga and KwaZulu-Natal). Data on completeness of reporting, simplicity, user acceptability and technical limitations were analysed. A Wilcoxon signed-rank test was used to compare the time difference between the two reporting systems. Results There were 1819 cases of malaria reported through the paper-based system, and 63.2% (1149) of those cases were also reported through the 24-h mobile reporting system. Out of the 272 healthcare workers who were interviewed, 40% (108) had seen malaria patients and reported a case through the 24-h mobile reporting system. The median time for cases to be reported through the 24-h mobile reporting system was significantly shorter at  39 days) (p < 0.001). It was found that 26% (28) were able to use the system and send reports within 2 min, 94% (256) were willing to continue to use the system. Of the 108 healthcare workers who reported a case, 18.5% (20) experienced network challenges. Conclusions The 24-h mobile reporting system is user friendly and trained healthcare workers are willing to use the system, despite network limitations. The 24-h mobile reporting system reduces the time required for diagnosed cases to be notified by the health care facility to district, provincial and national levels. The 24-h mobile reporting system is a feasible option for malaria notification in South Africa and will assist with early detection of malaria outbreaks

    Effectiveness of 24-h mobile reporting tool during a malaria outbreak in Mpumalanga Province, South Africa

    Get PDF
    Abstract Background As surveillance is a key strategy for malaria elimination in South Africa, ensuring strong surveillance systems is a National Department of Health priority. Historically, real time tracking of case trends and reporting within 24 h—a requirement in South Africa’s National surveillance guidelines—has not been possible. To enhance surveillance and response efficiency, a mobile surveillance tool, MalariaConnect, was developed using Unstructured Supplementary Service Data (USSD) technology. It was rolled out in health facilities in malaria endemic areas of South Africa to provide 24-h reporting of malaria cases. Methods To evaluate the efficiency of the mobile tool to detect an outbreak data were extracted from the paper based and MalariaConnect reporting systems in Bushbuckridge from 1 January to 18 June 2017. These data were subject to time series analyses to determine if MalariaConnect provided sufficient data reliably to detect increasing case trends reported through the paper system. The Chi squared test was used to determine goodness of fit between the following indicator data generated using MalariaConnect and paper reporting systems: timeliness, completeness, and precision. Results MalariaConnect adequately tracked case trends reported through the paper system. Timeliness of reporting increased significantly using MalariaConnect with 0.63 days to notification compared to 5.65 days using the paper-system (p < 0.05). The completeness of reporting was significantly higher for the paper system (100% completion; p < 0.05), compared to confirmed MalariaConnect cases (61%). There was a moderate association between data precision and the reporting system (p < 0.05). MalariaConnect provided an effective way of reliably and accurately identifying the onset of the malaria outbreak in Bushbuckridge. Conclusion Timeliness significantly improved using MalariaConnect and in a malaria elimination setting, can be used to markedly improve case investigation and response activities within the recommended 72-h period. Although data completeness and precision were lower compared to paper reporting, MalariaConnect data can be used to trigger outbreak responses
    corecore